Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechniques ; 76(1): 14-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947020

RESUMO

This study computationally evaluates the molecular docking affinity of various perfluoroalkyl and polyfluoroalkyl substances (PFAs) towards blood proteins using a generative machine-learning algorithm, DiffDock, specialized in protein-ligand blind-docking learning and prediction. Concerns about the chemical pathways and accumulation of PFAs in the environment and eventually in the human body has been rising due to empirical findings that levels of PFAs in human blood has been rising. DiffDock may offer a fast approach in determining the fate and potential molecular pathways of PFAs in human body.


Assuntos
Inteligência Artificial , Fluorocarbonos , Humanos , Simulação de Acoplamento Molecular , Algoritmos , Proteínas Sanguíneas
2.
BioTech (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36648834

RESUMO

The prospect of humans inhabiting planetary bodies is gaining interest among research and development communities, with the moon being considered as a transitory base camp and Mars the next planet humans will inhabit. NASA's Mission to Mars program is set to have humans inhabiting Mars within on-planet space camps by the Year 2030, which has tremendously increased research and development for space exploration-including research oriented toward human life support in long-term planetary lodging camps. The sustenance of human life on Mars will not be trivial due to the unavailability of an appropriate atmosphere and usable water. This situation requires a self-sustaining human life support system that can provide the basic needs such are breathable air, potable water, food, and energy. The feasibility of sending a payload with resources adequate to support long-term human inhabitation is not reasonable, which means every resource within a Mars space camp is valuable, including human-produced wastes. A biorefinery system that treats wastewater and can also produce valuable products such as oxygen, food, and energy offers a form of circular utilization of valuable resources. To conduct research for such systems requires a wastewater influent that is representative of the wastewater to be generated by the space crew within this isolated, confined environment, which is different from what is generated on Earth due to limited variability in diet, human activity, and lifestyle in this confined area. Collection of actual wastewater influent from an isolated environment supporting humans is challenging. Additionally, to ensure a safe working environment in the laboratory and avoid the imposed threat of handling actual human feces, the proposed synthetic, non-human feces containing wastewater influent formulation offers an easy-to-produce and safer-to-handle option. This paper reviews several synthetic wastewater compositions that have been formulated for space exploration purposes. None of the formulations were found to be realistic nor adequate for a space-camp-type scenario. Thus, the formulation of a synthetic wastewater for simulating a wastewater influent from a human space-based camp is proposed in this paper. In addition, the physical, chemical, and biodegradation characteristics of the final formulation designed are presented to illustrate the value of the proposed influent formulation.

3.
Foods ; 8(11)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698839

RESUMO

Starch gelatinization is an important process due to the prevalence of starch usage in industries such as cosmetics and food production. In this study, the gelatinization of waxy corn starch (WCS) was investigated with the goal of providing an option for the rapid determination of starch gelatinization characteristics. The procedure used in the study was solely based on differential scanning calorimetry (DSC), which is an established technique for the determination of thermal characteristics of starches. A sequence of experiments was conducted to determine the excess water condition, an estimate of the minimum gelatinization temperature, and gelatinization time. These parameters were found to be ≥65 wt.% water, 75-85 °C, and 10 min, respectively. The estimation of the minimum gelatinization temperature was determined from the thermal properties of the WCS as obtained by DSC. The obtained parameters resulted in complete WCS gelatinization, and, thus, the sequence of procedures used in the study could possibly be used for rapid waxy starch evaluation.

4.
J Hazard Mater ; 377: 381-390, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31173989

RESUMO

In this study, we first investigated the effects of textural parameters and surface properties of ordered mesoporous carbon (OMC) for the adsorptive removal of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) from aqueous solutions. The BET surface area, pore volume, and surface functional groups of OMC played a crucial role in affecting the adsorption performance of BTEX. Boric acid was used to increase the pore size and BET surface area of OMC from 5.94 nm to 6.74 nm and from 1276 m2/g to 1428 m2/g, respectively. Citric acid was used to introduce more oxygen-containing functional groups on the surface of OMC achieving an overall increase of 11.4% of the oxygen content. The batch adsorption experiments were conducted to evaluate the adsorption capacity for OMC and modified towards BTEX and the results showed that modified OMC exhibited a significant improvement for BTEX removal in the following order: Xylenes > Ethylbenzene > Toluene > Benzene. The BTEX adsorption capacities were improved from 8% to 15% with the addition of boric acid compared to the virgin. Surface functionalized using citric acid exhibited the total adsorption capacity of 142 mg/g with an increment of 40.5% compared to virgin OMC.

5.
Water Environ Res ; 91(9): 865-876, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31004529

RESUMO

The main objective of this study was to demonstrate a computational approach of global sensitivity analysis (GSA) integrated with functional principal component analysis (fPCA) for activated sludge models through aggregation of time-dependent model response patterns into time-independent coefficients of functional principal components (PCs). This proposed approach addresses the main issue of time-varying character of GSA indices when calculated solely on the time-dependent model outputs. The GSA-fPCA methodology was implemented using the rigorous model Activated Sludge Model No. 3 (ASM3) as case study. The approach transforms the time-dependent model outputs into functional PCs prior to calculation of GSA indices to remove the time-varying character of the calculated GSA indices. This work focused on the evaluation of the following key computational factors that may significantly influence the performance of the GSA-fPCA methodology: (a) model parameter sampling range, (b) model simulation period, (c) basis functions system, and (d) state of the system being modeled-batch or continuous activated sludge process. Results show that first few functional PCs capture up to 100% of the curve patterns in the time-dependent model outputs. The sensitivity indices calculated from the PC scores via Morris' GSA technique elucidated parameter sensitivity patterns inherent to the complex mathematical structure of ASM3. PRACTITIONER POINTS: Functional principal components-mediated GSA technique to remove time-varying character of sensitivity indices derived from time-dependent dynamical models. Technique amenable to improving efficiency of capturing response patterns into few functional principal components through various basis functions. Identifying priority parameters for ASM3 model calibration requires specification of target model outputs to which parameter sensitivities are calculated. GSA-fPCA offers a comprehensive numerical approach to manipulating models depending on the intended applications: simple fast-responding models to complex models.


Assuntos
Esgotos , Calibragem , Análise de Componente Principal
6.
J Ind Microbiol Biotechnol ; 42(5): 693-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25656153

RESUMO

Biodiesel is an alternative fuel made from costly vegetable oil feedstocks. Some microorganisms can accumulate lipids when nutrients are limited and carbon is in excess. Rhodococcus rhodochrous is a gram-positive bacterium most often used in bioremediation or acrylamide production. The purpose of this study was to investigate and characterize the lipid accumulation capabilities of R. rhodochrous. Shake flasks and a large-scale fermentation were used to cultivate R. rhodochrous in varying concentrations of glucose. R. rhodochrous achieved almost 50 % of dry cell mass as lipid when grown in 20 g/L of glucose. Wax esters and triglycerides were identified in R. rhodochrous lipid extract. The transesterified extractables of R. rhodochrous consisted of mostly palmitic (35 %) and oleic (42 %) acid methyl esters. This study shows R. rhodochrous to be an oleaginous bacterium with potential for application in alternative fuels.


Assuntos
Glucose/metabolismo , Lipídeos/biossíntese , Rhodococcus/metabolismo , Biocombustíveis/provisão & distribuição , Reatores Biológicos , Carbono/metabolismo , Fermentação , Ácidos Oleicos/metabolismo , Ácido Palmítico/metabolismo , Rhodococcus/citologia , Triglicerídeos/metabolismo , Ceras/metabolismo
7.
Bioresour Technol ; 148: 487-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077159

RESUMO

Lipid-enhancement of activated sludges was conducted to increase the amount of saponifiable lipids in the sludges. The sludges were obtained from a conventional activated sludge (CAS) and an oxidation ditch process (ODP). Results showed 59-222% and 150-250% increase in saponifiable lipid content of the sludges from CAS and ODP, respectively. The fatty acid methyl ester (FAMEs) obtained from triacylglycerides was 57-67% (of total FAMEs) for enhanced CAS and 55-73% for enhanced ODP, a very significant improvement from 6% to 10% (CAS) and 4% to 8% (ODP). Regardless of the source, the enhancement resulted in sludges with similar fatty acid profile indicating homogenization of the lipids in the sludges. This study provides a potential strategy to utilize existing wastewater treatment facilities as source of significant amount of lipids for biofuel applications.


Assuntos
Lipídeos/química , Esgotos/química , Purificação da Água/métodos , Ácidos Graxos/metabolismo , Oxirredução , Poli-Hidroxialcanoatos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...